
T H E R M A L  C O N D U C T I V I T Y  OF M I X T U R E S  W I T H  

I N T E R P E N E T R A T I N G  C O M P O N E N T S  

G. N. D u l ' n e v  UDC 536.23 

The basic principles of investigation of t ranspor t  p rocesses  used in general ized conduction the- 
ory  are formulated. Studies in which a s t ruc ture  with interpenetrat ing components has been 
used for determining electr ical  and thermal  conductivity are analyzed. It is shown that using 
models of such s t ruc tures  it is possible to calculate the thermal conductivity of gas mixtures,  
liquid solutions, solid d isperse  sys tems,  certain alloys, and granular  and fibrous materials .  

1. B a s i c  D e f i n i t i o n s  a n d  F o r m u l a t i o n  o f  t h e  P r o b l e m  

In what follows we shall be concerned with heterogeneous and homogeneous mixtures consist ing of two 
or more components.  The entire range of heterogeneous s t ruc tures  can be divided into three groups:  s t r uc -  
tures with isolated components,  s t ruc tures  with interpenetrating components, and their combinations (Fig. 
1). The principal qualitative feature of s t ruc tures  with interpenetrating components is the continuity of the 
material  of each component. Many natural and synthetic mater ia ls  have s t ruc tures  that relate them to the 
second or  third groups. However, the question of the t ranspor t  p rocesses  in such mater ia ls  has received 
relat ively little attention. At the same time, mixtures with closed inclusions have been the object of wide- 
spread r e sea rch  extending f rom the end of the last  century to the present  day [1-6].* 

In general ized conduction theory the individual components of a sys tem are treated as continua and on 
the basis of an analysis of the t ranspor t  process  a relation is established between the effective t ranspor t  
coefficient A and the s t ruc ture  of the system, the t ranspor t  coefficients of the individual components 
Ai, A 2 . . . .  and their concentrat ions ml, m2, . . . .  i . e . ,  

A= / (A1 ,  A~ , . . . ,  At . . . . .  rnl, rn~ . . . . .  rn~, ...). (1) 

We introduce the concept of mechanical  and nonmechanical mixtures.  For  mechanical mixtures the 
general ized conductivity A i of the s tar t ing components i is the same as that in the mixture A[, i . e . ,  

A~ = A~ :# q~(A1, A2, . . . ,  rnl, rn2 . . . .  ), (2) 

while for nonmechanica[ mixtures the conductivities A~ in the mixture are not equal to the corresponding co- 
l ! efficients A i of the s tar t ing components and depend on the t ranspor t  coefficients A1, A 2 . . . .  and the concen- 

trations ml, m 2 . . . . .  i . e . ,  

A ,  =~a A~ = (p (h~, h~,  . . . ,  In 1, rn 2 . . . .  ). (3) 

As will be shown below, in studying the t ranspor t  coefficients in homogeneous sys tems  (gas mixtures,  
liquid solutions, etc.)  it is desirable to represent  them in the form of s t ruc tures  with interpenetrating com-  
ponents. 

Below, we shall examine methods of theoret ical ly determining the thermal conductivity X of hetero-  
geneous and homogeneous sys tems  with interpenetrating components.  However, the conclusions retain their 
force for other general ized conduction coefficients also. 

*References are given only to certain ear ly  studies in this area  and to reviews published in recent  years .  
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Fig. 1. Schematic  two-dimensional  r ep resen ta t ion  of v a r -  
ious s t ruc tu re s :  a) with closed inclusions; b) with in te r -  
penetra t ing components;  c) combination of s t ruc tu re s  with 
closed and in terpenet ra t ing  components;  1, 2, 3) numbers  
of the var ious  components .  

We will consider  a s t ruc tu re  with in terpenet ra t ing  components  which, in addition to continuity of the 
ma te r i a l  of each component,  p o s s e s s e s  the following p rope r t i e s :  isotropy,  stabil i ty,  and geomet r i c  equiv- 
alence of the components .  

The p rope r ty  of isotropy is pos se s sed  by s y s t e m s  with components  distr ibuted e i ther  randomly (gas 
mixtures ,  liquid solutions,  g ranular  s y s t e m s ,  e tc . )  or  in an o rde red  a r rangement .  

We shall  call  a s y s t e m  stable if ove r  a broad range of var ia t ion  of component  concentrat ions it does 
not lose mechanical  equil ibrium. The las t  p rope r ty  - geomet r i c  equivalence of the components  - means  
that the effective value of the the rma l  conductivity is not affected by interchanging the posit ions of the c o m -  
ponents in the s t ruc tu re  without disturbing their  concentrat ion.  Fo r  example,  for  a b inary  s y s t e m  with 
component  the rma l  conductivit ies ~'1 and h2 and concentrat ions m 1 and m 2 geomet r i c  equivalence implies  

~ '= f (~ l ,  ~'2' ml, fi~/2) =f(~'2, ~'1, i~2, I7"/1), 

This p rope r ty  is not posses sed  by a s t ruc tu re  with closed inclusions (Fig. la); 
s y s t e m s  with in terpenet ra t ing  components  (Fig. lb).  

(4) 

it is cha rac t e r i s t i c  only of 

2. M e t h o d  of  I n v e s t i g a t i n g  G e n e r a l i z e d  C o n d u c t i v i t i e s  

In investigating t r anspor t  p r o c e s s e s  in var ious  s t ruc tu re s  the following basic  assumption is made in 
explicit  or  implici t  fo rm:  

a) The effective genera l ized  conductivi t ies of sy s t ems  with ordered  or random s t ruc tu r e s  a re  equal 
if these s t ruc tu re s  a re  equivalent and the p rope r t i e s  of the components and their  volume concentrat ions a re  
the same .  

Fo r  s y s t e m s  with in terpenet ra t ing  components  equivalence of a r andom and an ordered  s t ruc tu re  means 
that they a re  cha rac te r i zed  by isotropy,  stabil i ty,  and geomet r i c  equivalence of the components .  A pa i r  of 
random and ordered  s t ruc tu re s  is shown two-dimensional ly  in Fig. 2a, b; the meaning of the individual 
c i rc les  in this f igure is explained below. 

The above assumption is of fundamental  s ignif icance and de te rmines  the course  of the subsequent  in- 
vest igat ion,  since it pe rmi t s  any random s y s t e m  to be studied in t e r m s  of an ordered  model, which con-  
s iderab ly  s impl i f ies  the mathemat ica l  descr ipt ion of the t r anspo r t  p r o c e s s e s .  

Assumption "a" is not, as genera l ly  supposed, based on exper iment .  

The effective the rma l  conductivity of a random s t ruc tu re  is not affected if the specif ic  " randomness"  
is replaced by some other  equivalent random distr ibution.  This follows f r o m  the ve ry  definition of a r a n -  
dom or  s ta t i s t ica l  sys tem.  The pat tern  shown in Fig. 2b is one possible  s t ruc tu re  of a random sys tem.  
Although its probabi l i ty  is negligibly smal l ,  it is no less  probable  than any other random s t ruc tu re  such as, 
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Fig. 2. Transi t ion f rom a random s t ructure  with interpenetrat-  
ing components (a) to two-dimensionally (b) and three-d imens ion-  
ally (c) ordered s t ruc tures  and the unit cell (d); ABCD and abcd 
are adiabatic surfaces .  

for example, the distribution shown in Fig. 2a. In other words,  f rom the standpoint of the investigator an 
ordered s t ructure  is a par t icular  case of a random s t ructure  and the effective t ranspor t  proper t ies  will be 
the same if the conditions of equivalence are satisfied.* In this connection it is worth noting that for a r -  
b i t r a ry  s t ruc tures  there is a probabil i ty of a situation developing in which all the par t ic les  of one component 
are grouped in a cer tain region of space while the part icles  of the second component are grouped in another 
region of space. However, we shall not consider  such cases,  not owing to their improbability, but because 
such a s t ruc ture  is not equivalent to that represented in Fig. 2a (presence of anisotropy, geometr ic  non- 
equivalence of the components).  

If we conduct the subsequent investigation of the t ranspor t  coefficients in terms of ordered models, 
then a second assumption becomes important:  

b) The effective t ranspor t  coefficient of a sys tem with long-range order  and that of its unit cell are 
the same.  

*This approach may seem pecul iar  owing to a certain psychological preconception, according to which ran-  
domness and order  are  always qualitatively different. 
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Fig. 3. Unit cell  of s t ruc tu re  with closed cubic incLu- 
sions:  a) actual na ture  of the flow lines in the cell  at 
Xz/~ 1 > 1; b) approximate  (linearized) r ep resen ta t ion  of 
the flow lines; c, e) part i t ion of the unit cell  by adiaba-  
tic planes 1 - 1 ,  2 - 2 ,  and t h e r m a l - r e s i s t a n c e  connec-  
tion d iagram;  d, f) part i t ion of unit cell  by adiabatic 3 
- 3 ,  4 - 4  and i so thermal  5 - 5 ,  6 - 6  planes and thermaL- 
r e s i s t ance  connection d iagram.  

We reca l l  that the unit cell  is the sma l l e s t  volume element ,  by repeat ing which in a ce r ta in  way it is 
poss ib le  to obtain the s ta r t ing  s t ruc tu re  [7]. Consequently, the t r anspor t  p roces s  can be studied in r e l a -  
tion to the unit ceil  r a t he r  than over  the ent i re  volume,  which cons iderably  s impl i f ies  the subsequent in- 
vest igat ion.  Assumption ~b" is amenable  to r igorous  proof.  

In Figs.  2b and 2c an ordered  s t ruc tu re  with in terpenet ra t ing  components  is shown in two-dimensional  
and th ree -d imens iona l  form;  Fig. 2d is a represen ta t ion  of the unit ceil .  

A model of a s t ruc tu re  with in terpenet ra t ing  components was used as Long ago as 1932 by F r e y  to in- 
"ves t iga te  the e lec t r ica l  conductivity of b inary  eutectic alloys and porous s y s t e m s  filled with e lec t rolyte  [8]. 

In 1941, Franchuk [9] used a s i m i l a r  model to invest igate  the t he rma l  conductivity of nonordered f ibrous 
s t ruc tu res .  In 1965, Dul 'nev [10] used a model with in terpenet ra t ing  components  to de te rmine  the thermal  
conductivity of solids with communicat ing  pores .  We note that F rey ,  Franehuk,  and Dul 'nev a r r ived  at 
thei r  models f r o m  different  s ta r t ing  points.  The i r  unit cel ls ,  independently proposed,  a re  different  in form,  
but r e p r e s e n t  the s ame  orthogona[ th ree -d imens iona l  cubic lat t ice.  The mathemat ica l  descr ipt ion of the 
t r anspor t  p r o c e s s e s  in the unit ceil  is usually approximate ,  which  leads to different  functional re la t ions  for  
the same  cell.  Somet imes  the numer ica l  resu l t s  given by the different fo rmulas  differ  markedly ,  which in- 
t roduces some uncertainty.  This is true,  in par t icu la r ,  of the fo rmulas  proposed by F rey*  and Dul 'nev for  
the effective the rmal  conductivity of one and the s a m e  s t ruc tu re .  Here  we come to a v e r y  important  point 
that r equ i r e s  c l o s e r  considerat ion.  We will explain the basic  idea with r e f e r e n c e  to a s imple  s y s t e m  with 
closed inclusions. In ea r ly  s tudies [1, 2, 11, 12] the cu rva tu re  of the flow lines and isopotential  su r faces  
(Fig. 3a) was taken into account. Typical  in this r e spec t  is the work of Maxwell [1] and Rayleigh [2] at the 

end of the las t  century.  

Subsequently, the flow lines were  assumed to be approximate ly  s t ra igh t  (Fig. 3b), which s implif ied 
the mathemat ica l  descr ip t ion of the investigated p r o c e s s e s ,  but introduced a cer ta in  a r b i t r a r i n e s s  into the 
choice of the method of l inear izat ion of the flow lines or  isopotenttal  su r faces .  

In o rde r  to l inear ize  the flow in the unit ceil  it is par t i t ioned by a s y s t e m  of auxi l iary  adiabatic or iso-  
the rmal  su r faces  (or combinat ions of such surfaces)  or iented in a ce r ta in  way re la t ive  to the general  flow 
direction.  We will explain this with r e fe rence  to a s imple  unit cei l  with closed cubic inclusions.  

in Fig.  3c we show the unit cell  part ioned by auxi l iary adiabatic su r faces  1 - 1 ,  2 - 2 ,  which makes  it 
poss ib le  to calcula te  the the rmal  r e s i s t ances  RI, Rs, R 3, and R 4 of the individual pa r t s  of the cell  f r o m  the 

*A s i m i l a r  re la t ion was also obtained by Franchuk.  
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simple formulas  for  a plane wall. The way in which these res i s tances  are  connected is shown in Fig. 3e, 
f rom which the total res i s tance  1R of the entire ceil can be calculated. This res is tance  can also be represen-  
ted in the fo rm II = I /LS and equated to the thermal res is tance  of the ceil obtained above. After a ser ies  of 
t ransformat ions  we obtain an analytic expression of the type (1) for  the effective thermal conductivity of the 
s t ructure .  If the unit cell is partioned by adiabatic 3 - 3 ,  4 - 4  and isothermal  5 - 5 ,  6 - 6  surfaces  (Fig. 3d), 
then the res is tances  themselves,  the connection diagram (Fig. 3f), the form of the functional relation (1), 
and the calculated value of the effective thermal  conductivity will be different. Parti t ion by a sys tem of 
adiabatic surfaces  (Fig. 3c) leads to the minimum possible value 7tmin; partit ion b y a  combined sys tem of 
isothermal  and adiabatic surfaces  (Fig. 3d) gives the maximum value of the effective thermal  conductivity 

?'max [13, 141. 

It is neces sa ry  to establish the deviation of Xmt n and ~max f rom the true value and give preference  to 
some par t icular  method of l inearization. Some investigators propose to take the average of Xmi n and Xma x 
[14, 15], although any method of averaging introduces an element of a rb i t ra r iness .  

In 1965, the author investigated the discrepancy between the results  of calculations based on Odelev- 
ski t ' s  formula* and data obtained by analog simulation. A comparison revealed that over a broad range of 
variat ion of the pa ramete r s  Xl, )'2, and m the deviation of the calculations is not grea ter  than 4%, which lies 
within the limits of instrumental  e r ro r .  

A more  detailed investigation of this question was undertaken in 1966-1967 by Ivanov [13] using the 
USM-1 universal  e lectr ic  analog system.  The principal conclusions of this study reduce to the following. 

For  adiabatic part i t ion the value of X for the unit cell differs f rom the true value by not more  than 5% 
over a broad range of variat ion of the charac te r i s t ic  parameters ;  combined partition of the unit cell with 
a sys tem of isothermal  and adiabatic surfaces ,  as shown in Fig. 3d, gives a value of the effective thermal 
conductivity which in some cases  differs f rom the true value by 150-200%. 

An analysts of the resul ts  of [10, 13] shows that in all the cases  considered adiabatic parti t ion gives 
a good approximation of reality.  We are not aware of any s imi lar  investigation of the unit cell of a s t ruc ture  
with interpenetrat ing inclusions (Fig. 2c). However, the available experience in calculating the effective 
thermal  conductivity of such s t ruc tures  for different methods of par[toning the unit cell and comparison of 
the equations obtained with the experimental  data c lear ly  favor partioning the cell with adiabatic planes 1 - 1 ,  
2 - 2  and ABCD, abcd, as shown in Figs.  2d and 3c. Accordingly, we can formulate the following proposi -  
tion: 

e) If for any reason it is not possible to describe accurately the curvature of the flow lines in the unit 
cell, then the latter should be partitioned by infinitely thin adiabatic surfaces parallel to the principal direc- 
tion of heat flow in the cell. 

In Fig. 2 we have reproduced the unit cell of a structure with interpenetrating components and show it 
partitioned by the adiabatic planes ABCD and abcd. The method described above was used in [10] to calculate 
the resistance of the individual regions of the cell and its total resistance and to find an analytic expression 
for the effective thermal conductivity 3. of a binary system with interpenetrating components 

)~ 2vc + (1 - -  c) )~o 
- -  = c ~ v (I - -  c) ~ + ~ = -= ' ,  (5)  
)~1 vc -}- 1 - -  c' )h 

2c 3 - -  3c ~ -}- 1 = m 2, m i = 1 - -  m~. (6) 

Here, the subscr ipts  1 and 2 relate to the f i rs t  and second components,  while c is an auxiliary quantity 
uniquely determined by the volume concentration m 2. Of the three roots of Eq. (6) one is selected; a more 
detailed analysis of this equation is given in [10, 16, 17]. 

In investigating the t ranspor t  p rocess  in a s t ructure  with interpenetrat ing components both F r e y  [8] 
and Franchuk [9] partit ioned the unit cell by means of isothermal and adiabatic surfaces ,  which complicated 
the form of the expression for the effective thermal  conductivity and led to considerably exaggerated theoret-  
ical values. Clearly,  this explains why the model of a s t ruc ture  with interpenetrat ing components has been 

*V. f. Odelevskii has proposed a formula  for calculating the general ized conductivity of a s t ruc ture  with 
closed cubic inclusions; in deriving his formula  the author employed one of the methods of averaging ~-min 
and Xma x [14]. 
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genera l ly  d is regarded ,  although it was proposed a lmost  for ty  yea r s  ago. All over  the world inves t igators  
have continued to study different var ian ts  of s t ruc tu re s  with closed inclusions,  although they cor respond  to 
a minor i ty  of natural  and synthetic ma te r i a l s .  

The above methods of calculat ing the effect ive the rma l  conductivity of b inary  s y s t e m s  can be extended 
to s t r uc tu r e s  containing any number  of both closed and in terpenet ra t ing  components .  F o r  this purpose  it is 
n e c e s s a r y  to employ the method of succes s ive  reduction of the mult icomponent  mix ture  to a two-component  
mixture,  whose thermophys ica l  p rope r t i e s  can be de termined.  F o r  example,  cons ide r  a s t ruc tu re  cons i s t -  
ing of three ~nterpenetrat ing components .  

Since in such a s t ruc tu re  the components  a re  geomet r i ca l ly  equivalent, we may cons ider  them in any 
order .  F i r s t ,  having se lec ted  some  pa i r  of components (for example ,  2 - 3 ) ,  we de termine  their  effective 
t he rma l  conductivity f rom Eq. (5) 

~,_~= h(~2, ~, m~, rn;) (7) 

as the effective the rma l  conductivity of a mixture  with in terpenet ra t ing  inclusions and volume concen t ra -  
tions m~ and m~. The la t te r  a re  re la ted  with the s ta r t ing  concentrat ions by the express ion  [18] 

m~ = m, , m l - -  ms 
m~ -F ms m~ -4- ms (8) 

Returning to the s ta r t ing  s t ruc ture ,  we assume  that par t  of its volume cor responding  to the concentrat ion 
m23 = m s + m 3 is occupied by a continuous homogeneous isotropic  ma te r i a l  with the rma l  conductivity X~_ 3. 
The r e s t  of the volume is occupied by ma te r i a l  with the rma l  conductivity ~ and volume concentrat ion ml, 
i. e . ,  the th ree-component  s y s t e m  has been reduced to a two-component  s y s t e m  and its t he rma l  conductivity 
is then calculated f r o m  Eq. (5) 

~' = f..(~'l, ~-3, rnl, ~3)- (';)) 

A s i m i l a r  method is employed to analyze mult icomponent  mix tures  with closed or  combined inclusions 
[18]. Thus,  we can now formula te  the following proposi t ion.  

d) It is des i rab le  to analyze the effect ive the rma l  conductivity of var ious  s t ruc tu r e s  with r e fe rence  to 
b inary  sy s t ems ,  s ince a mult icomponent  s y s t e m  can usually be  reduced to a two-component  sys t em.  

3.  T h e r m a l  C o n d u c t i v i t y  o f  M i x t u r e s  of  G a s e s  a n d  L i q u i d s  

A gas mixture  is a c lass ica l  example  of a homogeneous s y s t e m  with random s t ruc tu re .  On the bas i s  
of assumpt ion "a" above, the the rma l  conductivity of such a mix ture  can be invest igated with r e f e r ence  to 
a model with o rde red  s t ruc tu re ,  if the la t ter  is equivalent to the random pa t te rn  of distr ibution of the dif-  
fe ren t  gas molecules .  These  p roper t i e s ,  as a l ready  mentioned, a re  pos se s sed  by a s t ruc tu re  with in te r -  
penet ra t ing  components:  the s t ruc tu re  is isotropic,  and the components  a re  geomet r i ca l ly  equivalent and 
uniformly dis t r ibuted over  the ent i re  volume of the mixture .  We note that re la t ion  (5), obtained for  b inary  
mixtures ,  can be applied only to mechanical  mix tures ,  whereas  the major i ty  of gas mix tures  a re  nonme-  
chanical:  the the rma l  conductivity of the components in the mixture  may differ  f r o m  that of the pure  gas,  
which is a t t r ibutable  to a change in molecu la r  mean f ree  path when the gases  are  mixed. However,  even 
in this case  it is poss ible  to employ Eq. (5) if we subst i tute for  ~'l and ~2 the values of the the rma l  conduc- 
t[vit ies ;~ and k~ of the components  found for  the mixture .  For  this purpose we can use the s imple  fo rmulas  
[19] 

~'; = ~ ' i ( m l  2t- m2 A;2)-i, ~'~ = ~2(m~ ~- ml A2l) - 1 -  (10) 
! ! 

The values  of the coefficients  At~ " and A21 are  presented  in [20] 

, , , 2 ,  ; =  , ,2 ,  A,, ,, 
/ 

(11) 
Si , S.t S~i ~,,= 1+ ~ ,  ,~j= 1 T-F-, ,~,j= 1+ -y. 

Here,  Si and Sj a re  Sutherland constants  cha rac te r i z ing  tbe in te rmolecu la r  fo rces .  The value of Sij for  a 
mixture  of nonpo[ar gases  is given by the express ion  [21] Sij = (SiSj) 1/2, while for  mix tures  with polar  c o m -  
ponents [20] Sij = 0.73 (SiSj)l/z. The coefficients  A~j. can also be  calculated f r o m  other  more  accura te  
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express ions  recen t ly  obtained. Let us consider  the method of calculat ing the the rmal  conductivity of a b i -  
na ry  gas mixture .  F r o m  express ions  (10) and (11) we de te rmine  the values  of the the rmal  conductivity of 
the components  in the mixture ,  i . e . ,  

3 , ; -  fa(3,1, 3,2, ml, m2, 0.1, 0"2, 31, $2, M~, M2). (12) 

The values obtained for  3.~ and ;~ a re  substi tuted in re la t ion (5) for  3~ 1 and X 2, respect ive ly ,  and the effective 
the rma l  conductivity of the mixture  is calculated:  

3,--h(3,~, 3,~, rnl, m~). 

The applicabi l i ty  of the proposed method has been tested by calculat ing ?t for  var ious  mix tures  of in- 
er t ,  polyatomic and polar  gases  over  the ent i re  range of var ia t ion  of component  concentrat ion at t e m p e r a -  
tures  f r o m  273 to 1100~ 

An analysis  of these resu l t s  shows that the d i sc repancy  between the calculated and exper imenta l  data 
does not exceed the e r r o r  of exper imenta l  de terminat ion of the the rmal  conductivity of gas mix tures  [19], 
i . e . ,  on ave rage  3-5%. 

We will examine the poss ib i l i ty  of using the model with in te rpenet ra t ing  components  to calculate  the 
the rma l  conductivity of another  homogeneous s y s t e m  - a liquid solution. F i r s t  of all, it is n e c e s s a r y  to 
just i fy the represen ta t ion  of a liquid solution in the f o r m  of a mechanical  mixture .  To some extent this 
assumpt ion  can be based on an analys is  of cer ta in  studies of the s t ruc tu re  of solutions.  Var ious  hypotheses 
concerning liquid s t ruc tu re  and, moreove r ,  exper imenta l  studies of liquids and solutions suggest  that un- 
s table  aggregat ions  (complexes) of s eve ra l  thousands of molecules  are  fo rmed  in the liquid. Apparently,  
the the rma l  conductivi t ies  of these  mae rocomplexes  r emain  constant  and depend only sl ightly on the con-  
centra t ion of the components  in the mixture .  The existence of s t ruc tu ra l  f o r m a t m n s  in solutions of a s -  
sociated liquids is even more  probable  [22-25]. 

If the liquid mixture  is a s sumed  to be  mechanical ,  then it is expedient to calculate  the thermal  con-  
ductivity f r o m  Eq. (5) for  b inary  solutions and f r o m  Eqs.  (5)-(9) for  mult icomponent  solutions.  The ap-  
pl icabi l i ty  of the proposed model of liquid solutions has been es tabl ished by compar ing  the theoret ica l  and 
exper imenta l  values  of the effective the rmal  conductivity of more  than fifty different  mix tures  of normal  
and assoc ia ted  liquids; the mean deviation of the theore t ica l  f r o m  the exper imenta l  data does not exceed 
7% [16, 26]. 

4 .  T h e r m a l  C o n d u c t i v i t y  o f  S o l i d  P o r o u s  S y s t e m s  w i t h  G a s e o u s  o r  

L i q u i d  I n c l u s i o n s  a n d  C e r t a i n  A l l o y s  

The effective t he rma l  conductivity of a solid with in te rcommunica t ing  po res  filled with a gas or  liquid 
can also be de termined with the aid of re la t ion (5). If the solid skeleton itself is heterogeneous,  i . e . ,  has 
an inclusion in the f o r m  of communica t ing  or  closed components ,  then the the rmal  conductivity of the ent i re  
s y s t e m  can be calculated using the combination of equations (5)-(9). Cer ta in  difficult ies a r i s e  in calculat ing 
the t he rma l  conductivity ~p of the gaseous inclusion, which consis ts  of molecu la r  Xpm and rad ia t ive  Xpr 
components ,  i. e . ,  

3,p= 3,pm~- )~pr' (13) 

The molecu la r  conductivity can be calculated f r o m  the express ion  [27] 

;~pm= 3,0 , B = 4k 2 - -  a H0 A~, 
1 -k B(H6) -1 (1 -kk)Pr  o - - ~  1 -k S "  (14) 

T 
Here ,  6 denotes the mean pore  s ize .  

tf the skeleton ma te r i a l  is nont ransparen t  for  radiat ion,  and the poros i ty  mp < 0.7, then the radia t ive  
component  Xpr can be calculated f r o m  the express ion  [28] 

3,pr = 2e~C0 T36, W/m.deg. (15) 

In s y s t e m s  with high poros i ty  the gas r ep re sen t s  most  of the volume of the ma te r i a l  and radia t ive  heat 
t r a n s f e r  should be cons idered  not only within the unit cell  but throughout the thickness of the ma te r i a l .  The 
just i f icat ion for  this approach is even g r e a t e r  if the solid skeleton is s e m i t r a n s p a r e n t  for  the rmal  radiation.  
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The heterogeneous s y s t e m  is r ep resen ted  in the fo rm of a homogeneous isotropic  medium with known cha r -  
ac te r i s t i c s  - absorpt ion and sca t t e r ing  coefficients;  it Ls assumed that the external  su r faces  of the [so-  
t ropic  medium are para l le l  and i so thermal .  There  have been numerous  studies of radia t ive  heat t r an s f e r  
through such a s y s t e m  [29-32]; we p re sen t  ce r ta in  resu l t s  of these  invest igat ions.  

In general ,  the radiat ion is attenuated by absorption and sca t t e r ing  on pore  wails ,  par t i c les ,  etc. The 
extinction coefficient  is equal to the sum of the absorpt ion and sca t t e r ing  coeff icients  

---- ~ -~ ~s. (16) 

Fo r  total absorpt ion (or s = 0) fl = o~. According to Poltz [32] the dependence of the radia t ive  component on 
the absorpt ion coefficient  ~, the t e m p e r a t u r e  of the ma te r i a l  T, the thickness l of the Layer, and the e m i s -  
s ivi t ies  e~ = e~ = e'  of the su r faces  bounding the l aye r  is given by 

16 CoT3Y (17) 

Here ,  Y = u (e ~, r) denotes the functional re la t ion presented  and tabulated in [32]. 

In [29] an express ion  for  the rad ia t ive  component  of the the rma l  Conductivity is given for  ce r ta in  cases  
of attenuation caused by both absorpt ion and sca t te r ing .  

Thus, using Eqs. (13)-(17), we can calcula te  the t he rma l  conductivity of the gaseous component  in 
closed or communicat ing  pores  for  var ious  gas p r e s s u r e s  ove r  a broad range of t empe ra tu r e s .  We will 
now cons ider  the application of these re la t ions  to var ious  heterogeneous s y s t e m s .  

In [33] values of the the rma l  conductivity calculated f r o m  Eqs. (5), (13)-(15) were  compared  with the 
exper imenta l  data for  a group of s t ruc tu ra l  and industrial  ma te r i a l s :  b r i cks  of var ious  kinds (pumice ce -  
ment, slag, tr ipoli ,  s i l ica,  e tc . )  and concre tes  (foam concrete ,  s l ag  concre te ,  aggregate  concre te ,  e tc . ) .  
Despi te  incomplete  information on the p rope r t i e s  of the components  and the ve ry  complicated s t ruc tu re  of 
the mechanical  mixtures ,  the theore t ica l  re la t ions Lead to resu l t s  in s a t i s f ac to ry  ag reement  with the ex-  
pe r imen ta l  data  of var ious  authors .  

Ia [4] the theoret ica l  and exper imenta l  values of the t he rma l  conductivity of chamot te  r e f r ac to r i e s  a re  
compared  on the t e m p e r a t u r e  in terval  80-1200~ These  c e r a m i c s  fo rm a mult icomponent  mixture:  the 
skeleton consis ts  of SiO~ in the amorphous  phase with inclusions of AlsO 3 in the c rys ta l l ine  phase.  The m a -  
ter ia l  is pe rmea ted  by open pores ,  i . e . ,  the solid and gaseous components  f o r m  a s y s t e m  with in terpene-  
t ra t ing components .  In the exper iments  the pores  were  filled with helium, Freon-12 ,  and a i r  at a p r e s s u r e  
of (0.99-0.13) �9 105 N/m 2. As shown in [4], the theoret ica l  and exper imenta l  data are  in s a t i s f ac to ry  ag ree -  
ment.  

Finally,  the the rmal  conductivity of var ious  Liquid-filled porous solids has also been investigated: oil-  
bea r ing  and wa t e r -bea r i ng  soi ls  [5, 35], and sy s t ems  composed of s i l i ca  spheres  and a liquid (benzene, 
ethanol, water ,  acetone) [36]. The resu l t s  of calculat ing the effect ive the rma l  conductivity f r o m  Eq. (5) 
differed f r o m  the exper imenta l  data by on average  7%. In re la t ion  to the applicabil i ty of Eq. (5) to b inary  
alloy mixtures ,  it was shown in [17] that the methods of investigation descr ibed  above can be used to d e t e r -  
mine the thermal  and e lec t r ica l  conductivity of alloys with components  that a re  a lmost  insoluble or  have 
only Limited solubil i ty (eutectic al loys,  alloy mixtures) .  

5 .  T h e r m a l  C o n d u c t i v i t y  of  D r y  G r a n u l a r  a n d  F i b r o u s  M a t e r i a l s  

There  have been numerous  studies of heat t r ans f e r  in g ranu la r  s y s t e m s  and these a re  reviewed in 
[3, 4, 5, 35, 39, 40, 41]. Various authors have proposed different  models  of granular  sy s t ems ,  which can 
be divided into two groups.  The f i r s t  group includes models  that consti tute a s y s t e m  of sphe res ,  el l ipsoids 
or  cubes with a ce r ta in  a r r a n g e m e n t  in space; the second group includes models  based  on a s t ruc tu re  with 
in terpenet ra t ing  components .  An analysis  of the models  of the f i r s t  group and the cor responding  equations 
shows that they are  not equivalent to actual g ranu la r  sy s t ems ,  which have a r andom s t ruc tu re .  As shown 
at the beginning of this ar t ic le ,  a r andom s t ruc tu re  p o s s e s s e s  i so t ropy and stab[lLty, while the models  of 
the f i r s t  group lose s tabi l i ty  at a poros i ty  mp > 0.5 (the spheres  move apar t  and are ,  as it were ,  suspended 
in space) .  Moreover ,  none of the equations obtained on the bas i s  of these models  can exp res s  all the ex-  
t r eme  cases  (limiting values of the poros i ty  and the rmal  conductivities) [37]. 
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Fig. 4. Unit cell of the f ramework of a granu-  
lar  system,  a) Unit cell in te t rahedral  a r range-  
meat; b) third par t  of cell; c) flow lines through 
part icle,  contact spot, and gas gap. 

The models of the second group possess  isotropy 
and stability. The results  of the f i rs t  investigations 
of such models were  published in [4, 42, 43]. 

As pointed out above, these models represent  
modifications of the s t ructure  with interpenetrating 
components:  contract ions are introduced into blocks 
of constant c ross  section. A model of this s t ruc ture  
ref lects  an important proper ty  of granular  sys tems 
- sharp contract ions of the c ross  section of the solid 
component. The t ranspor t  p rocesses  in such a model 
have been analyzed by the method descr ibed in s ec -  
tion 2 and the following expression has been derived 
for the effective thermal  conductivity [4, 43] 

--)~,s = + A ~- v ( 1 - -  c 2) + 2~c (1 - -  c) , v = --.~'P ( 1 8 )  
~cq- 1 - - c  ~..s 

Here, X s and ~,p are the thermal  conductivities of the 
grain and the gaseous component; the pa rame te r  A 
takes into account the thermal  res i s tance  of the gas be-  
tween part icles  and, moreover ,  the curvature  of the 
flow lines passing through the contraction and then 
spreading over the part icle.  

If we set A = 0, we go over to a block of con- 
stant c ross  section, and Eq. (18) takes the form (5). 
A shor tcoming of these models [4, 43] is the rough 
schemattzat ion of the geometry  of the gap between 
grains and the dependence of the grain shape on poros -  
ity. At high porosi t ies  (mp > 0.7) the lat ter  leads to 
distort ion of the shape of the grains - they degenerate 
into thin c rosses ,  which, of course,  does not correspond 
to reality.  

We will consider  the f i rs t  of these shortcomings in more detail. In [4] the gas gap in the contact zone 
is represented in the form of a gas wall with thickness equal to the height of the microroughness ,  t. e . ,  ap- 
proximate ly  one thousandth of  the grain diameter .  It can be shown that the a rea -averaged  thickness of the 
actual gap between spher ical  part icles  is approximately two orders  grea te r .  As our calculations have 
shown, underest imating the mean thickness of the gas gap should lead in cer tain cases  to values of the ef- 
fective thermal  conductivity too high by a factor  of two or  more.  Efforts to eliminate the principal d isad-  
vantages of the model described led, in 1969, to the development of a new stable model of granular  sys tems  
[37]. The actual s t ruc ture  of a granular  sys tem is represented schemat ical ly  in two dimensions in Fig. 2a. 
We note that the granular  s t ruc ture  is determined by a "f ramework" consist ing of a random, relat ively 
dense a r rangement  of grains ( f i r s t -o rder  structure) and l a rge r  cavLties that penetrate the f ramework and 
with it fo rm a s t ruc ture  with interpenetrat ing components ( second-order  structure)�9 This sys tem possesses  
both isotropy and stabili ty over  the entire range of variat ion of poros i ty  0.26 -< mp _< 1. 

On the basis  of assumption " a '  the thermal conductivity of the random sys tem can be studied with 
re fe rence  to an ordered model (Fig. 2b); on the basis  of assumption "b" it is expedient to analyze the t r ans -  
port  p rocess  with re fe rence  to the unit cell (Fig. 2c); proposit ion "d" permits  a s t ructure  of higher order  
to be reduced to f i r s t - o r d e r  s t ruc ture .  Thus, using the methods described above, we can represen t  the ef- 
fective thermal  conductivity of a granular  sys tem with the aid of relation (5), which takes the form 

2  c2(1 -c2) ], 
2 ~2 

~, Zf c2+v2(1- -c9  ~ + ~ c ~ + ( l _ c ~ ) ]  = - z f '  (19) 

mt~ = 2c~-  3c~-k 1, rnp2 = (rap-- m~) (1 --mr) -1. 

We note that relation (19) is capable of expressing all extreme eases.  The calculation of the thermal  eon- 
duettvity Xf of the f ramework is an independent problem. As a l ready noted, the f ramework is composed of 
a relat ively dense (0.3 < mf < 0.5), random ar rangement  of par t ic les  of different size and arb i t rary ,  but 
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nonelongated, shape.  The the rmal  conductivity of the f r a m e w o r k  has been analyzed by a method based on 
assumpt ions  "a" and "b" (the f r a m e w o r k  is a s y s t e m  with long- range  o rde r  composed of identical spher ica l  
pa r t i c les  in an isotropic t e t rahedra l  a r rangement ) .  The unit cell  is r ep resen ted  in the fo rm of a right 
hexagonal p r i s m  descr ibed  about a sphere  of radius r with base  a r ea  S c = 2 3,]~'r2 and height h c = 1.62r 
(Fig. 4a); owing to the axial s y m m e t r y  the t r anspor t  p roces s  can be invest igated with r e f e r ence  to one 
third of the cell  (Fig. 4b). In this ceil  it is n e c e s s a r y  to take into account the curva tu re  of the flow lines 
pass ing  through the contact spot and the gas gap between par t i c les  (Fig. 4c). Special attention has been 
given to the method of de termining the thermal  r e s i s t ance  of the gas gap and the contact  spot.  

We shall  omit  the final express ion  for  calculat ing ~.f, s ince  it is given in [37]. We shall  s imply  exam-  
ine the method of calculat ing the thermal  conductivity of the gas- f i l led  pores .  F o r  this purpose  it is pos -  
s ible  to employ re la t ion (13), in which the molecu la r  component  is found f r o m  Eq. (14). In this case  dif-  
ferent  values of the pore  dimensions 6 a re  taken for  the pores  in the f r a m e w o r k  and those in the second-  
o rde r  s t ruc tu re .  

The rad ia t ive  component  of the the rma l  conductivity in the f i r s t - o r d e r  s t ruc tu re  (framework) wa~ de-  
t e r m i n e d  f r o m  Eq. (15) and that in the s e c o n d - o r d e r  s t ruc tu re  f r o m  (17). In this case  we encounter  an in- 
dependent p rob lem - the determinat ion of the absorpt ion coefficient  a of the granular  sys tem.  As shown 
in [44], in ce r ta in  cases  the l a t t e r  can be de te rmined  analytically.  The model of a s t ruc tu re  with in terpene-  
t ra t ing components  gives a good descr ip t ion [44] of the h e a t - t r a n s f e r  p rocess  in dry  f ibrous s y s t e m s  (felt, 
f ibrous insulating ma te r i a l s ,  e tc . )  ove r  a broad range of var ia t ion  of gas p r e s s u r e  at var ious  ma te r i a l  t e m -  
p e r a t u r e s .  The effect ive the rmal  conductivity of such s y s t e m s  can be calculated f r o m  Eqs.  (5), (6). The 
molecu la r  component  kpm is calculated f romEq.  (13). where  the pore  s ize  6 is re la ted  with the f iber  d i am-  
e t e r  D by the express ion  

6 = 0 . 8 9 D  ( l - c c  ~ - -1) .  (20) 

The radia t ive  component  of the t he rma l  conductivity of a f ibrous s y s t e m  is de te rmined  f r o m  Eq. (17); if 
the radiat ion is comple te ly  absorbed by the f ibers ,  the extinction coefficient  a of the ma te r i a l  can be es t i -  
mated f rom the express ion  

a = 2.26 c~ (2 - -  c) - - ,  m'1. (21) 
D 

In the p r e s ence  of total o r  par t ia l  sca t t e r ing  of the radiat ion pass ing through the f ibrous s y s t e m  the 
coefficient  oz can be es t imated using the re la t ions  given in [44]. 

In conclusion we note that a compar i son  of the calculated and exper imenta l  values of ). for  g ranu la r  
and f ibrous s y s t e m s  over  a broad range  of var ia t ion  of the cha r ac t e r i s t i c  p a r a m e t e r s  leads to s a t i s f ac to ry  
resu l t s .  

Our analysis  of the t r anspor t  p r o c e s s e s  in heterogeneous and homogeneous s y s t e m s  leads us to the 
following conclusion: the model of a s t ruc tu re  with in te rpenet ra t ing  components  makes  it poss ib le  to ca l -  
culate the genera l ized  conductivi t ies of var ious  solid, liquid, and gas mix tures  by a unified method. C lea r -  
ly, this does not exhaust  the poss ib i l i t ies  of the s t ruc tu re  in question. It could poss ib ly  be  used to find an 
analytic express ion  for  the the rmal  conductivity of wetted s y s t e m s  and, moreove r ,  ce r ta in  nonmechanical  
mix tures  (metal mel ts ,  solutions of sa l ts  and e lec t ro ly tes ,  reac t ing  gases ,  e tc . ) .  Natural ly,  this will r e -  
qui re  the fur ther  development  of the model and a more  detailed examination of the mechan i sm of the p r o -  
cess .  

A 
X 
h and X{ 

x0 
Xf, Xp, andX s 

m i 

NOTATION 

is the generalized conductivity; 
is the effective thermal conductivity of the mixture; 
are the thermal conductiv[ties of the initial i-th component and component i in the 

mixture; 
is the thermal conductivity of the gas under normal conditions; 
are the thermal conductivities of the framework of a granular system, the pores, and 

the solid particles; 
is the volume concentration of the i-th component; 
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mp, mp2, and mf 

cr i and M i 
k = Cp/C v 
a 

e' and e 

P r  o 
H 

Aoo 
Si 
T 
C O = 5.67 �9 108 W/m. deg 4 
5 
fl, ~, and crs 

T= ~l 

are  the total poros i ty  of the granular  sys tem,  and the volume concentrat ions 
of the gas component in the second-o rde r  s t ruc tu re  and the framework;  

are  the d iamete r  and mass of the molecules of gas component i; 
is the rat io  of specific heats; 
is the pore  wall accomodation coefficient; 
a re  the emiss ivi t ies  of the external  sur faces  bounding the sys tem and the 

par t ic le  surface;  
ts the Prandtl  number  under normal  conditions; 
Ls the f i l l e r -gas  p ressure ;  
Ls the molecular  mean f r ee  path at an infinitely high temperature ;  
ts Sutherland's  constant; 
ts the t empera tu re  of the mater ia l  in ~ 
ts the S te fan -  Boltzmann constant; 
ts the mean pore size in the system; 
are  the radiation extinction coefficient  and the absorption and sca t te r ing  co- 

efficients; 
is the optical path length. 
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