THERMAL CONDUCTIVITY OF MIXTURES WITH
INTERPENETRATING COMPONENTS

G. N. Dul'nev UDC 536.23

The basic principles of investigation of transport processes used in generalized conduction the-
ory are formulated, Studies in which a structure with interpenetrating components has been
used for determining electrical and thermal conductivity are analyzed. It is shown that using
models of such structures it is possible to calculate the thermal conductivity of gas mixtures,
liguid solutions, solid disperse systems, certain alloys, and granular and fibrous materials.

1. Basic Definitions and Formulation of the Problem

In what follows we shall be concerned with heterogeneous and homogeneous mixtures consisting of two
or more components, The entire range of heterogeneous structures can be divided into three groups: struc-
tures with isolated components, structures with interpenetrating components, and their combinations (Fig.
1). The principal qualitative feature of structures with interpenetrating components is the continuity of the
material of each component. Many natural and synthetic materials have structures that relate them to the
second or third groups. However, the question of the transport processes in such materials has received
relatively little attention. At the same time, mixtures with closed inclusions have been the object of wide-
spread research extending from the end of the last century to the present day [1-6].*

In generalized conduction theory the individual components of a system are treated as continua and on
the basis of an analysis of the transport process a relation is established between the effective transport
coefficient A and the structure of the system, the transport coefficients of the individual components
Ay, Ay, ... and their concentrations my, m,, ..., i.e.,

A=FfAy, Ay ooy Ay ooy My, My, ooy My, o) (1)

We introduce the concept of mechanical and nonmechanical mixtures., For mechanical mixtures the
generalized conductivity A; of the starting components i is the same as that in the mixture Ai" i.e.,

AttzAi#(p(Aly Azr cees My N, )’ (2)

while for nonmechanical mixtures the conductivities Ai' in the mixture are not equal to the corresponding co-
efficients A; of the starting components and depend on the transport coefficients Ai', Az', ... and the concen-~
trations my, m,, ..., i.e.,

AZ%A; = (A;, A;, coey My, fl, L) (3)

As will be shown below, in studying the transport coefficients in homogeneous systems (gas mixtures,

liguid solutions, etc.) it is desirable to represent them in the form of structures with interpenetrating com-
ponents.

Below, we shall examine methods of theoretically determining the thermal conductivity A of hetero-
geneous and homogeneous systems with interpenetrating components. However, the conclusions retain their
force for other generalized conduction coefficients also,

*References are given only to certain early studies in this area and to reviews published in recent years.
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Fig. 1. Schematic two-dimensional representation of var-
ious structures: a) with closed inclusions; b) with inter-
penetrating components; c¢) combination of structures with
closed and interpenetrating components; 1, 2, 3) numbers
of the various components,

We will consider a structure with interpenetrating components which, in addition to continuity of the
material of each component, possesses the following properties: isotropy, stability, and geometric equiv-
alence of the components,

The property of isotropy is possessed by systems with components distributed either randomly (gas
mixtures, liquid solutions, granular systems, etc.) or in an ordered arrangement,

We shall call a system stable if over a broad range of variation of component concentrations it does
not lose mechanical equilibrium. The last property — geometric equivalence of the components — means
that the effective value of the thermal conductivity is not affected by interchanging the positions of the com-
ponents in the structure without disturbing their concentration. For example, for a binary system with
component thermal conductivities Ay and A, and concentrations m, and m, geometric equivalence implies

A=, Ay my, my) = f Ay, Ay, my, my). (4

This property is not possessed by a structure with closed inclusions (Fig. 1a); it is characteristic only of
systems with interpenetrating components (Fig. 1b).

2. Method of Investigating Generalized Conductivities

In investigating transport processes in various structures the following basic assumption is made in
explicit or implicit form:

a) The effective generalized conductivities of systems with ordered or random structures are equal
if these structures are equivalent and the properties of the components and their volume concentrations are
the same,

For systems with interpenetrating components equivalence of a random and an ordered structure means
that they are characterized by isofropy, stability, and geometric equivalence of the components. A pair of
random and ordered structures is shown two-dimensionally in Fig, 2a, b; the meaning of the individual
circles in this figure is explained below,

The above assumption is of fundamental significance and determines the course of the subsequent in-
vestigation, since it permits any random system to be studied in terms of an ordered model, which con-
siderably simplifies the mathematical description of the transport processes.

Assumption "a" is not, as generally supposed, based on experiment,

The effective thermal conductivity of a random structure is not affected if the specific "randomness"
is replaced by some other equivalent random distribution. This follows from the very definition of a ran-
dom or statistical system. The pattern shown in Fig. 2b is one possible structure of a random system.
Although its probability is negligibly small, it is no less probable than any other random structure such as,
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Fig. 2. Transition from a random structure with interpenetrat-

ing components (a) to two-dimensionally (b) and three-dimension-
ally (c) ordered structures and the unit cell (d); ABCD and abed

are adiabatic surfaces.

for example, the distribution shown in Fig, 2a. In other words, from the standpoint of the investigator an
ordered structure is a particular case of a random structure and the effective transport properties will be
the same if the conditions of equivalence are satisfied.* In this connection it is worth noting that for ar-
bitrary structures there is a probability of a situation developing in which all the particles of one component
are grouped in a certain region of space while the particles of the second component are grouped in another
region of space. However, we shall not consider such cases, not owing to their improbability, but because
such a structure is not equivalent to that represented in Fig. 2a (presence of anisotropy, geometric non-
equivalence of the components),

If we conduct the subsequent investigation of the transport coefficients in terms of ordered models,
then a second assumption becomes important:

b) The effective transport coefficient of a system with long-range order and that of its unit cell are
the same.

*This approach may seem peculiar owing to a certain psychological preconception, according to which ran-
domness and order are always qualitatively different.
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Fig. 3. Unit cell of structure with closed cubic inclu-
sions: a) actual nature of the flow lines in the cell at
As/A; > 1; b) approximate (linearized) representation of
the flow lines; c, e) partition of the unit cell by adiaba-
tic planes 1—-1, 2—-2, and thermal-resistance connec-
tion diagram; d, f) partition of unit cell by adiabatic 3
—3, 4—4 and isothermal 55, 6—6 planes and thermal-
resistance connection diagram, '

We recall that the unit cell is the smallest volume element, by repeating which in a certain way it is
possible to obtain the starting structure [7]. Consequently, the transport process can be studied in rela-
tion to the unit cell rather than over the entire volume, which considerably simplifies the subsequent in-
vestigation. Assumption "b" is amenable to rigorous proof.

In Figs. 2b and 2¢c an ordered structure with interpenetrating components is shown in two-dimensional
and three-dimensional form; Fig. 2d is a representation of the unit cell,

A model of a structure with interpenetrating components was used as long ago as 1932 by Frey to in~

“vestigate the electrical conductivity of binary eutectic alloys and porous systems filled with electrolyte [8].
Tn 1941, Franchuk [9] used a similar model to investigate the thermal conductivity of nonordered fibrous
structures. In 1965, Dul'nev [10] used a model with interpenetrating components to determine the thermal
conductivity of solids with communicating pores. We note that Frey, Franchuk, and Dul'nev arrived at
their models from different starting points. Their unit cells, independently proposed, are different in form,
but represent the same orthogonal three-dimensional cubic lattice. The mathematical description of the
transport processes in the unit cell is usually approximate, which leads to different functional relations for
the same cell, Sometimes the numerical results given by the different formulas differ markedly, which in-
troduces some uncertainty. This is true, in particular, of the formulas proposed by Frey* and Dul'nev for
the effective thermal conductivity of one and the same structure. Here we come to a very important point
that requires closer consideration, We will explain the basic idea with reference to a simple system with
closed inclusions. In early studies [1, 2, 11, 12] the curvature of the flow lines and isopotential surfaces
(Fig. 3a) was taken into account, Typical in this respect is the work of Maxwell [1] and Rayleigh [2] at the
end of the last century,

Subsequently, the flow lines were assumed to be approximately straight (Fig. 3b), which simplified
the mathematical description of the investigated processes, but introduced a certain arbitrariness into the
choice of the method of linearization of the flow lines or isopotential surfaces.

in order to linearize the flow in the unit cell it is partitioned by a system of auxiliary adiabatic or iso-
thermal surfaces (or combinations of such surfaces) oriented in a certain way relative to the general flow
direction, We will explain this with reference to a simple unit cell with closed cubic inclusions.

In Fig. 3c we show the unit cell partioned by auxiliary adiabatic surfaces 11, 2—2, which makes it
possible to calculate the thermal resistances Ry, R, Rj, and R, of the individual parts of the cell from the

*A similar relation was also obtained by Franchuk.
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simple formulas for a plane wall. The way in which these resistances are connected is shown in Fig, 3e,
from which the total resistance R of the entire cell can be calculated, This resistance can also be represen-
ted in the form R = I/AS and equated to the thermal resistance of the cell obtained above. After a series of
transformations we obtain an analytic expression of the type (1) for the effective thermal conductivity of the
structure. If the unit cell is partioned by adiabatic 3—3, 4—4 and isothermal 55, 66 surfaces (Fig. 3d),
then the resistances themselves, the connection diagram (Fig. 3f), the form of the functional relation (1),
and the calculated value of the effective thermal conductivity will be different. Partition by a system of
adiabatic surfaces (Fig. 3c) leads to the minimum possible value A, ;,; partition by a combined system of
isothermal and adiabatic surfaces (Fig. 3d) gives the maximum value of the effective thermal conductivity
Amax [13, 14].

It is necessary to establish the deviation of Apmin and Ay 55 from the true value and give preference to
some particular method of linearization, Some investigators propose to take the average of Ay jp and Apax
[14, 15], although any method of averaging introduces an element of arbitrariness.

In 1965, the author investigated the discrepancy between the results of calculations based on Odelev-
skii's formula* and data obtained by analog simulation. A comparison revealed that over a broad range of
variation of the parameters Ay, A,, and m the deviation of the calculations is not greater than 4%, which lies
within the limits of instrumental error.

A more detailed investigation of this question was undertaken in 1966-1967 by Ivanov [13] using the
USM-1 universal electric analog system, The principal conclusions of this study reduce to the following.

For adiabatic partition the value of A for the unit cell differs from the true value by not more than 5%
over a broad range of variation of the characteristic parameters; combined partition of the unit cell with
a system of isothermal and adiabatic surfaces, as shown in Fig. 3d, gives a value of the effective thermal
conductivity which in some cases differs from the true value by 150-200%.

An analysis of the results of [10, 13] shows that in all the cases considered adiabatic partition gives
a good approximation of reality, We are not aware of any similar investigation of the unit cell of a structure
with interpenetrating inclusions (Fig. 2c¢). However, the available experience in calculating the effective
thermal conductivity of such structures for different methods of partioning the unit cell and comparison of
the equations obtained with the experimental data clearly favor partioning the cell with adiabatic planes 1-1,
22 and ABCD, abed, as shown in Figs. 2d and 3c. Accordingly, we can formulate the following proposi-
fion:

c) If for any reason it is not possible to describe accurately the curvature of the flow lines in the unit
cell, then the latter should be partitioned by infinitely thin adiabatic surfaces parallel to the principal direc-
tion of heat flow in the cell.

In Fig. 2 we have reproduced the unit cell of a structure with interpenetrating components and show it
partitioned by the adiabatic planes ABCD and abed. The method described above was used in [10] to calculate
the resistance of the individual regions of the cell and its total resistance and to find an analytic expression
for the effective thermal conductivity A of a binary system with interpenetrating components

A 2 2ve+(1—¢) Ay

— = 1 - 2 R == —_H, 5

Xy v C)+vc—}—1—-c Y Ay ®)
2 —3c*+ 1 =my, my=1—m, (6)

Here, the subscripts 1 and 2 relate to the first and second components, while c is an auxiliary quantity
uniquely determined by the volume concentration m,. Of the three roots of Eq. (6) one is selected; a more
detailed analysis of this equation is given in [10, 16, 17].

In investigating the transport process in a structure with interpenetrating components both Frey [8]
and Franchuk [9] partitioned the unit cell by means of isothermal and adiabatic surfaces, which complicated
the form of the expression for the effective thermal conductivity and led to considerably exaggerated theoret-
ical values. Clearly, this explains why the model of a structure with interpenetrating components has been

*V. L. Odelevskii has proposed a formula for calculating the generalized conductivity of a structure with

closed cubic inclusions; in deriving his formula the author employed one of the methods of averaging Amin
and Apay [14].
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generally disregarded, although it was proposed almost forty years ago. All over the world investigators
have continued to study different variants of structures with closed inclusions, although they correspond to
a minority of natural and synthetic materials.

The above methods of calculating the effective thermal conductivity of binary systems can be extended
to structures containing any number of both closed and interpenetrating components, For this purpose it is
necessary to employ the method of successive reduction of the multicomponent mixture to a two-component
mixture, whose thermophysical properties can be determined. For example, consider a structure consist-
ing of three interpenetrating components,

Since in such a structure the components are geometrically equivalent, we may consider them in any
order., First, having selected some pair of components (for example, 2—3), we determine their effective
thermal conductivity from Eq. (5)

Aog =1 (Ag R ms, m3) (7
as the effective thermal conductivity of a mixture with interpenetrating inclusions and volume concentra-
tions mé and mg. The latter are related with the starting concentrations by the expression [18]

m, . my
r M3 = .
My~ My : my, + my

my = 8
Returning to the starting structure, we assume that part of its volume corresponding to the concentration
my; = m, + mg is occupied by a continuous homogeneous isotropic material with thermal conductivity A,_j.
The rest of the volume is occupied by material with thermal conductivity A, and volume concentration my,
i,e., the three-component system has been reduced to a two-component system and its thermal conductivity
is then calculated from Eqg. (5)

A =fz.(7‘-1r Moss my, Mmyg). (9

A similar method is employed to analyze multicomponent mixtures with closed or combined inclusions
{18]. Thus, we can now formulate the following proposition,.

d) It is desirable to analyze the effective thermal conductivity of various structures with reference to
binary systems, since a multicomponent system can usually be reduced to a two-component system,

3. Thermal Conductivity of Mixtures of Gases and Liquids

A gas mixture is a classical example of a homogeneous system with random structure. On the basis
of assumption "a" above, the thermal conductivity of such a mixture can be investigated with reference to
a model with ordered structure, if the latter is equivalent to the random pattern of distribution of the dif-
ferent gas molecules. These properties, as already mentioned, are possessed by a structure with inter-
penetrating components: the structure is isotropic, and the components are geometrically equivalent and
uniformly distributed over the entire volume of the mixture., We note that relation (5), obtained for binary
mixtures, can be applied only to mechanical mixtures, whereas the majority of gas mixtures are nonme-
chanical: the thermal conductivity of the components in the mixture may differ from that of the pure gas,
which is attributable to a change in molecular mean free path when the gases are mixed. However, even
in this case it is possible to employ Eq. (5) if we substitute for A, and A, the values of the thermal conduc-
tivities A{ and A, of the components found for the mixture. For this purpose we can use the simple formulas
(19]

M= A (my -+ my Al)Y, Ag = A, {my - my Aoy~ (10)
The values of the coefficients A{z and A;I are presented in [20]

A = m/_i)“{"ﬁj_"’i)‘”, i=12, j=12
Tow \Gi v 2M; '
(11
: S, S S,
n=14 =1 "r}i’ Vig=1+4 o>
Here, Si and Sj are Sutherland constants characterizing the intermolecular forces. The value of 8y for a
mixture of nonpolar gases is given by the expression [21] §jj = (S-lS-)l/z, while for mixtures with polar com-
ponents [20] S;; = 0.73 (SiSj)Vz. The coefficients A{j can also be calculated from other more accurate
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expressions recently obtained, Let us consider the method of calculating the thermal conductivity of a bi-
nary gas mixture. From expressions (10) and (11) we determine the values of the thermal conductivity of
the components in the mixture, i.e.,

A= f3(7‘1) Ay My, My, Oy, Oy Sy, Sy My, My). (12)

The values obtained for Aj and A, are substituted in relation (5) for A, and Ay, respectively, and the effective
thermal conductivity of the mixture is calculated:

7\4=f4(}\4;1 7\‘;1 ml! m2)'

The applicability of the proposed method has been tested by calculating X for various mixtures of in-
ert, polyatomic and polar gases over the entire range of variation of component concentration at tempera-
tures from 273 to 1100°K.

An analysis of these results shows that the discrepancy between the calculated and experimental data
does not exceed the error of experimental determination of the thermal conductivity of gas mixtures [19],
i.e., on average 3-5%.

We will examine the possibility of using the model with interpenetrating components to calculate the
thermal conductivity of another homogeneous system — a liquid solution, First of all, it is necessary to
justify the representation of a liquid solution in the form of a mechanical mixture. To some extent this
assumption can be based on an analysis of certain studies of the structure of solutions, Various hypotheses
concerning liquid structure and, moreover, experimental studies of liquids and solutions suggest that un-
stable aggregations (complexes) of several thousands of molecules are formed in the liquid, Apparently,
the thermal conductivities of these macrocomplexes remain constant and depend only slightly on the con-
centration of the components in the mixture. The existence of structural formations in solutions of as-
sociated liquids is even more probable [22-25].

If the liquid mixture is assumed to be mechanical, then it is expedient to calculate the thermal con-
ductivity from Eq. (5) for binary solutions and from Eqgs. (5)-(9) for multicomponent solutions. The ap-
plicability of the proposed model of liquid solutions has been established by comparing the theoretical and
experimental values of the effective thermal conductivity of more than fifty different mixtures of normal
and associated liquids; the mean deviation of the theoretical from the experimental data does not exceed
7% [16, 26].

4, Thermal Conductivity of Solid Porous Systems with Gaseous or

Liquid Inclusions and Certain Alloys

The effective thermal conductivity of a solid with intercommunicating pores filled with a gas or liquid
can also be determined with the aid of relation (5). If the solid skeleton itself is heterogeneous, i.e., has
an inclusion in the form of communicating or closed components, then the thermal conductivity of the entire
system can be calculated using the combination of equations (5)-(9). Certain difficulties arise in calculating
the thermal conductivity 7\10 of the gaseous inclusion, which consists of molecular Kpm and radiative Apy
components,i.e,,

The molecular conductivity can be calculated from the expression [27]
A 4k 2—a A
Agpemt —————0______ g . Z2Tdpy L 14
pm 1 -+ B(HS)™? (1 + k) Pr, a " .S (14
T

Here, 6 denotes the mean pore size.

If the skeleton material is nontransparent for radiation, and the porosity my, < 0.7, then the radiative
component A,,. can be calculated from the expression [28]

Apr = 2e*C, T2 5, W/m.deg. (15)

In systems with high porosity the gas represents most of the volume of the material and radiative heat
transfer should be considered not only within the unit cell but throughout the thickness of the material. The
justification for this approach is even greater if the solid skeleton is semitransparent for thermal radiation,
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The heterogeneous system is represented in the form of a homogeneous isotropic medium with known char- .
acteristics — absorption and scattering coefficients; it is assumed that the external surfaces of the iso-
tropic medium are parallel and isothermal. There have been numerous studies of radiative heat transfer
through such a system [29-32]; we present certain results of these investigations.

In general, the radiation is attenuated by absorption and scattering on pore walls, particles, etc. The
extinction coefficient is equal to the sum of the absorption and scattering coefficients

p=a-tos (16)

For total absorption (64 = 0) B = a. According to Poltz [32] the dependence of the radiative component on
the absorption coefficient ¢, the temperature of the material T, the thickness I of the layer, and the emis-
sivities g; = &, = €' of the surfaces bounding the layer is given by

16 G, T*Y
g = o (1

Here, Y = Y (&', 7) denotes the functional relation presented and tabulated in [32].

In [29] an expression for the radiative component of the thermal conductivity is given for certain cases
of attenuation caused by both absorption and scattering.

Thus, using Egs. (13)-(17), we can calculate the thermal conductivity of the gaseous component in
closed or communicating pores for various gas pressures over a broad range of temperatures, We will
now consider the application of these relations to various heterogeneous systems.

In [33] values of the thermal conductivity calculated from Eqs. (5), (13)-(15) were compared with the
experimental data for a group of structural and industrial materials: bricks of various kinds (pumice ce-
ment, slag, tripoli, silica, etc.) and concretes (foam concrete, slag concrete, aggregate concrete, etc.).
Despite incomplete information on the properties of the components and the very complicated structure of
the mechanical mixtures, the theoretical relations lead to results in satisfactory agreement with the ex-
perimental data of various authors.

In [4] the theoretical and experimental values of the thermal conductivity of chamotte refractories are
compared on the temperature interval 80~1200°K. These ceramics form a multicomponent mixture: the
skeleton consists of §i0, in the amorphous phase with inclusions of Al,O; in the crystalline phase. The ma-
terial is permeated by open pores, i.e., the solid and gaseous components form a system with interpene-
trating components, In the experiments the pores were filled with helium, Freon-12, and air at a pressure
of (0.99-0.13) - 10° N/m?. As shown in [4], the theoretical and experimental data are in satisfactory agree-
ment,

Finally, the thermal conductivity of various liquid-filled porous solids has also been investigated: oil-
bearing and water-bearing soils [5, 35], and systems composed of silica spheres and a liquid (benzene,
ethanol, water, acetone) [36]. The results of calculating the effective thermal conductivity from Eq. (5)
differed from the experimental data by on average 7%. In relation to the applicability of Eq. (5) to binary
alloy mixtures, it was shown in [17] that the methods of investigation described above can be used to deter-
mine the thermal and electrical conductivity of alloys with components that are almost insoluble or have
only limited solubility (eutectic alloys, alloy mixtures).

5. Thermal Conductivity of Dry Granular and Fibrous Materials

There have been numerous studies of heat transfer in granular systems and these are reviewed in

[3, 4, 5, 35, 39, 40, 41]. Various authors haveproposed different models of granular systems, which can
be divided into two groups. The first group includes models that constitute a system of spheres, ellipsoids
or cubes with a certain arrangement in space; the second group includes models based on a structure with
interpenetrating components. An analysis of the models of the first group and the corresponding equations
shows that they are not equivalent to actual granular systems, which have a random structure. As shown
at the beginning of this article, a random structure possesses isotropy and stability, while the models of
the first group lose stability at a porosity my > 0.5 (the spheres move apart and are, as it were, suspended
in space). Moreover, none of the equations obtained on the basis of these models can express all the ex-
treme cases (limiting values of the porosity and thermal conductivities) [37].
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The models of the second group possess isotropy
and stability. The results of the first investigations
of such models were published in [4, 42, 43].

NN
I

i

[ As pointed out above, these models represent

T modifications of the structure with interpenetrating
§~ components: contractions are introduced into blocks
H of constant cross section. A model of this structure
reflects an important property of granular systems

— sharp contractions of the cross section of the solid
component, The transport processes in such a model
have been analyzed by the method described in sec-
tion 2 and the following expression has been derived
for the effective thermal conductivity [4, 43]

‘ |

2ve(l —¢) v—h

] —1
IR . A i 1_____2 ' , —_
( + ) v C)—i_vc—}—l—c A

(18)

Here, Ag and 7‘p are the thermal conductivities of the
grain and the gaseous component; the parameter A
takes into account the thermal resistance of the gas be-
tween particles and, moreover, the curvature of the
flow lines passing through the contraction and then

‘a’l spreading over the particle,

If we set A = 0, we go over to a block of con-
stant cross section, and Eq. (18) takes the form (5).
A shortcoming of these models [4, 43] is the rough
schematization of the geometry of the gap between
grains and the dependence of the grain shape on poros-
ity. At high porosities (my > 0.7) the latter leads to
distortion of the shape of the grains — they degenerate
into thin crosses, which, of course, does not correspond
to reality.

Fig. 4. Unit cell of the framework of a granu-
lar system, a) Unit cell in tetrahedral arrange-
ment; b) third part of cell; c¢) flow lines through
particle, contact spot, and gas gap.

We will consider the first of these shortcomings in more detail. In [4] the gas gap in the contact zone
is represented in the form of a gas wall with thickness equal to the height of the microroughness, i.e., ap-
proximately one thousandth of the grain diameter. It can be shown that the area-averaged thickness of the
actual gap between spherical particles is approximately two orders greater. As our calculations have
shown, underestimating the mean thickness of the gas gap should lead in certain cases to values of the ef-
fective thermal conductivity too high by a factor of two or more. Efforts to eliminate the principal disad-
vantages of the model described led, in 1969, to the development of a new stable model of granular systems
[37]. The actual structure of a granular system is represented schematically in two dimensions in Fig. 2a,
We note that the granular structure is determined by a "framework" consisting of a random, relatively
dense arrangement of grains (first-order structure) and larger cavities that penetrate the framework and
with it form a structure with interpenetrating components (second-order structure). This system possesses
both isotropy and stability over the entire range of variation of porosity 0.26 = my =1,

On the basis of assumption "a" the thermal conductivity of the random system can be studied with
reference to an ordered model (Fig. 2b); on the basis of assumption "b" it is expedient to analyze the trans-
port process with reference to the unit cell (Fig. 2c); proposition "d" permits a structure of higher order
to be reduced to first-order structure. Thus, using the methods described above, we can represent the ef-
fective thermal conductivity of a granular system with the aid of relation (6), which takes the form
2vy (1 — ) :\ v _ kp
vo o+ (1—c)] ° Af

Mpy = 2 — 3c§ + 1, Mpy = (mp —mg) (1 —mg) ™%

A= Af { G+ vy (1 —cy)? +
(19)

We note that relation (19) is capable of expressing all extreme cases. The calculation of the thermal con-
ductivity A of the framework is an independent problem. As already noted, the framework is composed of
arelatively dense (0.3 <my < 0.5), random arrangement of particles of different size and arbitrary, but
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nonelongated, shape. The thermal conductivity of the framework has been analyzed by a method based on
assumptions "a" and "o" (the framework is a system with long-range order composed of identical spherical
particles in an isotropic tetrahedral arrangement). The unit cell is represented in the form of a right
hexagonal prism described about a sphere of radius r with base area §; = 2v/3r? and height h, = 1.62r

(Fig. 4a); owing to the axial symmetry the transport process can be investigated with reference to one
third of the cell (Fig. 4b). In this cell itisnecessary to take into account the curvature of the flow lines
passing through the contact spot and the gas gap between particles (Fig, 4c). Special attention has been
given to the method of determining the thermal resistance of the gas gap and the contact spot.

We shall omit the final expression for calculating A¢, since it is given in [37]. We shall simply exam-
ine the method of calculating the thermal conductivity of the gas-filled pores., For this purpose it is pos~
sible to employ relation (13), in which the molecular component is found from Eq. (14). In this case dif-
ferent values of the pore dimensions § are taken for the pores in the framework and those in the second-
order structure. "

The radiative component of the thermal conductivity in the first-order structure (framework) was de-
termined from Eq. (15) and that in the second-order structure from (17). In this case we encounter an in-
dependent problem — the determination of the absorption coefficient o of the granular system. As shown
in [44], in certain cases the latter can be determined analytically. The model of a structure with interpene-
trating components gives a good description [44] of the heat-transfer process in dry fibrous systems (felt,
fibrous insulating materials, etc.) over a broad range of variation of gas pressure at various material tem-
peratures. The effective thermal conductivity of such systems can be calculated from Eqs. (5), (6). The
molecular component )‘pm is calculated fromEq. (13). where the pore size § is related with the fiber diam-
eter D by the expression

i—c¢
5= 0.89D ( - -—1). (20)
The radiative component of the thermal conductivity of a fibrous system is determined from Eq. (17); if
the radiation is completely absorbed by the fibers, the extinction coefficient o« of the material can be esti-
mated from the expression '

2(9
o = 2.26 f(zTCl, m-1. (21)

In the presence of total or partial scattering of the radiation passing through the fibrous system the
coefficient o can be estimated using the relations given in [44].

In conclusion we note that a comparison of the calculated and experimental values of A for granular
and fibrous systems over a broad range of variation of the characteristic parameters leads to satisfactory
results,

Our analysis of the transport processes in heterogeneous and homogeneous systems leads us to the
following conclusion: the model of a structure with interpenetrating components makes it possible to cal-
culate the generalized conductivities of various solid, liquid, and gas mixtures by a unified method, Clear-
ly, this does not exhaust the possibilities of the structure in question, It could possibly be used to find an
analytic expression for the thermal conductivity of wetted systems and, moreover, certain nonmechanical
mixtures (metal melts, solutions of salts and electrolytes, reacting gases, etc.). Naturally, this will re-
quire the further development of the model and a more detailed examination of the mechanism of the pro-
cess,

NOTATION

A is the generalized conductivity;

A is the effective thermal conductivity of the mixture;

A and A} are the thermal conductivities of the initial i-th component and component i in the
mixture;

Ay is the thermal conductivity of the gas under normal conditions;

Af, Ap, and Ag are the thermal conductivities of the framework of a granular system, the pores, and
the solid particles;

m; is the volume concentration of the i-th component;
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my, Mpy, and mg are the total porosity of the granular system, and the volume concentrations
of the gas component in the second-order structure and the framework;
g; and Mj are the diameter and mass of the molecules of gas component i;
k = cpley is the ratio of specific heats;
a is the pore wall accomodation coefficient;
g'and € are the emissivities of the external surfaces bounding the system and the
particle surface;
Pr, is the Prandtl number under normal conditions;
H is the filler-gas pressure;
A is the molecular mean free path at an infinitely high temperature;
Si is Sutherland's constant;
T is the temperature of the material in °K;
Cy = 5.67-10° W/m - deg? is the Stefan—Boltzmann constant:
b is the mean pore size in the system,;
B, «, and og are the radiation extinction coefficient and the absorption and scattering co-
efficients;
T=wl is the optical path length,
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